

Quick Break D Nowchem

Version No: **1.5**Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date:30/03/2016 Revision Date: 29/01/2021 L.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier		
Product name	Quick Break D	
Chemical Name	Not Applicable	
Synonyms	Not Available	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Best used for the removal of fat, grease and oil from surfaces including metal, concrete, plastic, rubber and aluminium.

Details of the supplier of the safety data sheet

Registered company name	Nowchem	
Address	A Albatross Road NSW Australia	
Telephone	(02) 4421 4099	
Fax	(02) 4421 4932	
Website	www.nowchem.com.au	
Email	sales@nowchem.com.au	

Emergency telephone number

Association / Organisation	Nowchem
Emergency telephone numbers	(02) 4421 4099
Other emergency telephone numbers	0413 809 255

SECTION 2 Hazards identification

Classification of the substance or mixture

 ${\sf HAZARDOUS\ CHEMICAL.\ NON-DANGEROUS\ GOODS.\ According\ to\ the\ WHS\ Regulations\ and\ the\ ADG\ Code.}$

ChemWatch Hazard Ratings

		Min	Max	
Flammability	1			
Toxicity	0			0 = Minimum
Body Contact	2		- 1	1 = Low
Reactivity	1			2 = Moderate
Chronic	2			3 = High 4 = Extreme

Poisons Schedule	Not Applicable	
Classification ^[1]	Skin Corrosion/Irritation Category 2, Serious Eye Damage Category 1, Skin Sensitizer Category 1, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation)	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Version No: 1.5 Page 2 of 13

Quick Break D

Issue Date:30/03/2016 Revision Date: 29/01/2021

Signal word

Danger

Hazard statement(s)

H315	Causes skin irritation.	
H318	Causes serious eye damage.	
H317	May cause an allergic skin reaction.	
H335	May cause respiratory irritation.	

Precautionary statement(s) General

P101	If medical advice is needed, have product container or label at hand.	
P102	Keep out of reach of children.	
P103	Read label before use.	

Precautionary statement(s) Prevention

· · · · · · · · · · · · · · · · · · ·		
P101	If medical advice is needed, have product container or label at hand.	
P102	Keep out of reach of children.	
P103	Read label before use.	
P271	Use only outdoors or in a well-ventilated area.	
P280	Wear protective gloves/eye protection when appropriate.	
P261	Avoid breathing mist/vapours/spray.	
P272	Contaminated work clothing should not be allowed out of the workplace.	

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
1 303+1 331+1 330	IN ETEC. Trible caulously with water for several fillinges. Temove contact felices, if present and easy to do. Continue filling.	
P310	Immediately call a POISON CENTER or doctor/physician.	
P321	Specific treatment (see advice on this label).	
P362	Take off contaminated clothing and wash before reuse.	
P302+P352	IF ON SKIN: Wash with plenty of water.	
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.	
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.	

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
7320-34-5	<10	potassium pyrophosphate
8051-30-7	<10	diethanolamine cocoate
8046-53-5	<10	(linear)alkylbenzenesulfonic acid, sodium salts
68647-72-3	<10	orange oil
2634-33-5	<1	1,2-benzisothiazoline-3-one

SECTION 4 First aid measures

Description of first aid measures

If this product comes in contact with the eyes: **Eye Contact**

- Wash out immediately with fresh running water.
- Finsure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

Version No: 1.5 Page **3** of **13**

Quick Break D

Issue Date:30/03/2016 Revision Date: 29/01/2021

	 Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 Firefighting measures

Extinguishing media

- ► Water spray or fog.
- ► Foam.
- ► Dry chemical powder.
- ► BCF (where regulations permit).
- ► Carbon dioxide.

Special hazards arising from the substrate or mixture

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
dvice for firefighters	Avoid contamination with oxidising agents i.e. flidates, oxidising acids, chidnile bleaches, pool chidnile etc. as ignition may result
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire.
Fire/Explosion Hazard	 Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. May emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. May emit poisonous fumes. May emit corrosive fumes.
HAZCHEM	Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Mothods and material for containment and cleaning

Methods and material for containment and cleaning up		
Minor Spills	Environmental hazard - contain spillage. Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.	
Major Spills	Environmental hazard - contain spillage. Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources.	

Version No: 1.5 Page 4 of 13

Quick Break D

Issue Date:30/03/2016 Revision Date: 29/01/2021

- ► Increase ventilation.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- ▶ Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- ▶ DO NOT allow clothing wet with material to stay in contact with skin

Other information

Safe handling

- ► Store in original containers.
- Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- ► Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container	 Packaging as recommended by manufacturer (Fluorinated HDPE). Check all containers are clearly labelled and free from leaks. 	
Storage incompatibility	d-Limonene: • forms unstable peroxides in storage, unless inhibited; may polymerise • reacts with strong oxidisers and may explode or combust • is incompatible with strong acids, including acidic clays, peroxides, halogens, vinyl chloride and iodine pentafluoride • flow or agitation may generate electrostatic charges due to low conductivity • Avoid reaction with oxidising agents	

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Not Available

Emergency Limits

ingredient	ngredient waterial name		IEEL-1	TEEL-2	TEEL-3
potassium pyrophosphate	potassium pyrophosphate Potassium pyrophosphate; (Tetrapotassium diphosphorate)		61 mg/m3	680 mg/m3	1,200 mg/m3
Ingredient	Original IDLH	Revised	IIDLH		
potassium pyrophosphate	Not Available	Not Ava	ilable		
diethanolamine cocoate	Not Available	Not Ava	ilable		
(linear)alkylbenzenesulfonic acid, sodium salts	Not Available	Not Ava	ilable		
orange oil	Not Available	Not Ava	ilable		
1,2-benzisothiazoline-3-one	Not Available	Not Ava	ilable		

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
potassium pyrophosphate	E	≤ 0.01 mg/m³
diethanolamine cocoate	Е	≤ 0.1 ppm
(linear)alkylbenzenesulfonic acid, sodium salts	E	≤ 0.01 mg/m³

Notes:

Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.

Version No: 1.5 Page 5 of 13

Quick Break D

range of exposure concentrations that are expected to protect worker health.

Issue Date:30/03/2016
Revision Date: 29/01/2021

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
orange oil	E	≤ 0.1 ppm	
1,2-benzisothiazoline-3-one	E	≤ 0.01 mg/m³	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a		

MATERIAL DATA

for d-Limonene:

CEL TWA: 30 ppm, 165.6 mg/m3 (compare WEEL-TWA*)

(CEL = Chemwatch Exposure Limit)

A Workplace Environmental Exposure Level* has been established by AIHA (American Industrial Hygiene Association) who have produced the following rationale:

d-Limonene is not acutely toxic. In its pure form it is not a sensitiser but is irritating to the skin. Although there is clear evidence of carcinogenicity in male rats, the effect has been attributed to an alpha-2u-globin (a2u-G) renal toxicity which is both species and gender specific. Humans do not synthesise a2u-G, and metabolism studies indicate that 75% to 95% of d-limonene is excreted in 2-3 days with different metabolites identified between humans and rats. In a 2-year study, liver effects were noted in male mice at 500 mg/kg and reduced survival was noted in female rats at 600 mg/kg. The no observable effect levels (NOELs) were 250 and 300 mg/kg, respectively. A WEEL of 30 ppm is recommended to protect against these effects.

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Appropriate engineering controls Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area

Personal protection

Eye and face protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- ▶ Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:

The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

Hands/feet protection

- frequency and duration of contact,chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

See Other protection below

Other protection

- Barrier cream.Skin cleansing cream.
- ► Eye wash unit.

Version No: 1.5 Page 6 of 13

Quick Break D

Issue Date:30/03/2016 Revision Date: 29/01/2021

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Clear Green Liquid		
Physical state	Liquid	Relative density (Water = 1)	1.05 - 1.07
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	10.5 - 11.3	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Non Flammable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological ef	fects
Inhaled	Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. The material has NOT been classified by EC Directives or other classification systems as 'harmful by inhalation'. This is because of the lack of corroborating animal or human evidence. In the absence of such evidence, care should be taken nevertheless to ensure exposure is kept to a minimum and that suitable control measures be used, in an occupational setting to control vapours, fumes and aerosols.
Ingestion	Inorganic polyphosphates are used extensively in domestic and industrial products. Rats fed 10% sodium trimetaphosphate for a month exhibited transient tubular necrosis; those given 10% sodium metaphosphate exhibited growth retardation; 10% sodium hexametaphosphate produced pale and swollen kidneys. Salts of this type appear to be hydrolysed in the bowel to produce phosphoric acid and systemic acidosis may result following absorption. Higher molecular weight species, absorbed from the alimentary canal, may produce hypocalcaemic tetany due to binding of ionised calcium by the absorbed phosphate. This is reported in at least one case following ingestion of sodium tripolyphosphate. The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.
Skin Contact	Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there

may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

The material may accentuate any pre-existing dermatitis condition

Version No: 1.5 Page 7 of 13

Quick Break D

Issue Date:30/03/2016
Revision Date: 29/01/2021

Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Limited evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a significant number of individuals at a greater frequency than would be expected from the response of a normal population.

Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking.

In the presence of air, a number of common flavour and fragrance chemicals can form peroxides surprisingly fast. Antioxidants can in most cases minimise the oxidation.

Fragrance terpenes are generally easily oxidised in air. Non-oxidised limonene, linalool and caryophyllene turned out to be very weak sensitizers, however after oxidation limonene hydroperoxide and linalool hydroperoxide are strong sensitizers. Of the patients tested 2.6% showed positive reaction to oxidised limonene, 1.3% to oxidised linalool, 1.1% to linalool hydroperoxide, 0.5% to oxidised caryophyllene, while testing with caryophyllene oxide and oxidised myrcene resulted in few positive patch tests. 2/3 of the patients reacting positive to oxidised terpenes had fragrance related contact allergy and/or positive history for adverse reactions to fragrances.

Chronic

As well as the hydroperoxides produced by linalol, limonene and delta-3-carene other oxidation and resinification effects progressively causes other fairly major changes in essential oil quality over time. Autoxidation of fragrance terpenes contributes greatly to fragrance allergy, which emphasizes the need of testing with compounds that patients are actually exposed to and not only with the ingredients originally applied in commercial formulations.

Hydroperoxides of d-limonene are potent contact allergens when studied in guinea pigs. They may result when d-limonene is unstabilised against oxidation, or upon prolonged standing at room temperature and/ or upon exposure to light, or when stabiliser levels diminish. The two major hydroperoxides in auto-oxidised d-limonene, are cis- and trans- limonene-2-hydroperoxide (2-hydroperoxy-p-mentha-6,8-diene). In photo-oxidised d-limonene, they represent a minor fraction. Hydroperoxides may bind to proteins of the skin to make antigens either via a radical mechanism or after reactions to give epoxides. The cross-reactivity between the epoxide limonene-1,2-oxide, a potent contact allergen, and the hydroperoxides is NOT significant, indicating different mechanisms of sensitisation.

Peroxidisable terpenes and terpenoids should only be used when the level of peroxides is kept to the lowest practicable level, for instance by adding antioxidants at the time of production. Such products should have a peroxide value of less than 10 millimoles peroxide per liter. This requirement is based on the published literature mentioning sensitising properties when containing peroxides.

Absorbed sulfonates are quickly distributed through living systems and are readily excreted. Toxic effects may result from the effects of binding to proteins and the ability of sulfonates to translocate potassium and nitrate (NO3-) ions from cellular to interstitial fluids. Airborne sulfonates may be responsible for respiratory allergies and, in some instances, minor dermal allergies.

Citrus spp. oils and other furocoumarins containing essential oils must be used so that the total level of bergapten (5-MOP) will not exceed: (a) 15 ppm in the finished cosmetic products, intended for application on skin areas likely to be exposed to

sunshine, excluding rinse-off products. (b) 1 ppm in sun protection and in bronzing products. In the presence of other phototoxic ingredients, the sum of their concentrations (expressed as % of the of the respective maximum levels) shall not exceed 100%.

The Scientific Committee on Cosmetic Products and Non-food Products intended for Consumers (SCCNFP): Section II: Perfume and Aromatic Raw Materials October 2000

Quick Break D

TOXICITY	IRRITATION
Not Available	Not Available

potassium pyrophosphate

TOXICITY	IRRITATION
Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Eye: adverse effect observed (irritating) ^[1]
Oral(Rat) LD50; >300-<2000 mg/kg ^[1]	Skin: no adverse effect observed (not irritating) ^[1]

diethanolamine cocoate

TOXICITY	IRRITATION
Oral(Rat) LD50; >2000 mg/kg ^[2]	Not Available

(linear)alkylbenzenesulfonic acid, sodium salts

TOXICITY	IRRITATION
Oral(Rat) LD50; 800 mg/kg ^[2]	Not Available

orange oil

TOXICITY	IRRITATION
Dermal (rabbit) LD50: >5000 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]
Oral(Rat) LD50; >5000 mg/kg ^[2]	Skin (rabbit): 500mg/24h moderate
	Skin: no adverse effect observed (not irritating) ^[1]

Version No: 1.5 Page 8 of 13

Quick Break D

Issue Date:30/03/2016 Revision Date: 29/01/2021

	TOXICITY	IRRITATION	
1,2-benzisothiazoline-3-one	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: adverse effect observed (irreversible damage)[1]	
	Oral(Rat) LD50; 454 mg/kg ^[1]	Skin: no adverse effect observed (not irritating) ^[1]	
	·		
Legend:	egend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

🗶 - Data either not available or does not fill the criteria for classification 🌶 – Data available to make classification

SECTION 12 Ecological information

exicity									
	Endpoint		Test Duration (hr)		Species	Value		Source	
Quick Break D	Not Available				Not Available	Not Available	ı	Not Available	
	Endpoint	Tes	t Duration (hr)	Spec	cies		Value		Source
	LC50	96		Fish			>100mg/L		2
potassium pyrophosphate	EC50	48		Crus	tacea		>100mg/L		2
	EC50	72		Alga	e or other aquatic plants	S	>100mg/L		2
	NOEC	72		Alga	e or other aquatic plants	6	>100mg/L		2
	Endpoint	Toe	t Duration (hr)	Spec	ios		Value		Source
	EC50	48	Duration (iii)	Crust			=2.39mg/L		1
diethanolamine cocoate	EC50	96			or other aquatic plants		=2.3mg/L		1
	EC0	96			Algae or other aquatic plants		=1mg/L		1
	NOEC	504			Crustacea		=1mg/L		1
(linear)alkylbenzenesulfonic acid, sodium salts	Endpoint EC50		Test Duration (hr)		Species Crustacea	Valu 2mg	ı/L	Sour 5	ce
	NOEC 168 Fish 0.3mg/L 5								
	Endpoint		Test Duration (hr)		Species	Value		Sour	rce
orange oil	LC50		96		Fish		0.32mg/L		
orange on	EC50		48		Crustacea		45mg/L 2		
	NOEL		48		Crustacea 0.48m		ng/L	2	
	Endpoint	Test	Duration (hr)	Species		Valu	ie		Source
	LC50	96		Fish		-0.0	67-0.29mg/L		4
1,2-benzisothiazoline-3-one	EC50	48		Crustace	Crustacea		0.097-mg/L		4
	EC50	72		Algae or	other aquatic plants	0.07	0.07mg/L		2
	NOEL	96		Fish		0.03	1-mg/L		4

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/ or functioning of natural ecosystems.

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Quick Break D

Issue Date:30/03/2016 Revision Date: 29/01/2021

for propylene glycol ethers:

Environmental fate:

Most are liquids at room temperature and all are water-soluble.

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene alvcol methyl ether (TPM)

Environmental fate: Log octanol-water partition coefficients (log Kow's) range from 0.309 for TPM to 1.523 for DPnB. Calculated BCFs range from 1.47 for DPnB to 3.16 for DPMA and TPM, indicating low bioaccumulation. Henry's Law Constants, which indicate propensity to partition from water to air, are low for all category members, ranging from 5.7 x 10-9 atm-m3/mole for TPM to 2.7 x10-9 atm-m3/mole for PnB. Fugacity modeling indicates that most propylene glycol ethers are likely to partition roughly equally into the soil and water compartments in the environment with small to negligible amounts remaining in other environmental compartments (air, sediment, and aquatic biota). Propylene glycol ethers are unlikely to persist in the environment. Once in air, the half-life of the category members due to direct reactions with photochemically generated hydroxyl radicals, range from 2.0 hours for TPM to 4.6 hours for PnB. In water, most members of this family are 'readily biodegradable' under aerobic conditions. (DPMA degraded within 28 days (and within the specified 10-day window) but only using pre-adapted or 'acclimated' inoculum.). In soil, biodegradation is rapid for PM and PMA.

Acute aquatic toxicity testing indicates low toxicity for both ethers and acetates. For ethers, effect concentrations are > 500 mg/L. For acetates, effect concentrations are > 151 mg/L. For 3-methyl-3-methoxy butanol (MMB):

Environmental fate:

MMB is a colourless liquid with a water solubility of 100 g/l at 25 C, a melting point of lower than -50 C, a boiling point of 173 C at 1013 hPa, a vapour pressure of 1.25 hPa at 25 C and a density of 0.927 g/cm3 at 25 C. Based on the measured log Kow value of 0.18 bio- or geoaccumulation of this chemical is unlikely. Environmental distribution using a Mackay level III fugacity model suggests that when MMB is released into air or water, it remains in the original compartment whereas when released into soil, 29.4 % is distributed into air, 9.3 % into water and 61.3 % remains in soil. A ready biodegradability test showed that MMB failed to meet a criterion for ready biodegradability (biodegradation rate = 50% after 28 days), however complete biodegradation was observed in an inherent biodegradation test. A study on hydrolysis indicates that MMB is stable in water. In the atmosphere MMB is indirectly photodegraded by reaction with OH radicals with a half-life of 1.1 days

Algae.ErC50 (72 h): Selenastrum capricornutum >1000 mg/l; EbC50 >1000 mg/l (OECD TG 201, open system)

Daphnia magna EC50 (48 h): >1000 mg/l (OECD TG 202, static)

Fish LC50:(96 h): Oryzias latipes >100 mg/l (OECD TG 203, semi-static)

For chronic toxicity to algae, a 72 h NOEbC of 1,000 mg/L (OECD TG 201, Selenastrum capricornutum, open system) was reported. In daphnids, an 21 d EC50 of >100 mg and a 21 d NOEC of 100 mg/L were reported (OECD TG 211, Daphnia magna, semi-static).

Monomethyltin chloride, thioglycolate esters, and tall oil ester reaction product

Monomethyltin trichloride (MMTC, CAS RN: 993-16-8), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA)), CAS RN: 57583-34-3), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA)), CAS RN: 57583-34-3), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA)), CAS RN: 57583-34-3), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA)), CAS RN: 57583-34-3), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA)), CAS RN: 57583-34-3), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA)), CAS RN: 57583-34-3), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA)), CAS RN: 57583-34-3), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA)), CAS RN: 57583-34-3), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA)), CAS RN: 57583-34-3), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA)), CAS RN: 57583-34-3), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA)), CAS RN: 57583-34-3), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA)), CAS RN: 57583-34-3), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA)), CAS RN: 57583-34-3), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA)), CAS RN: 57583-34-3), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA)), CAS RN: 57583-34-3), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA)), CAS RN: 57583-34-3), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA)), CAS RN: 57583-34-3), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA)), CAS RN: 57583-34-3), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (EHTG; MMT (2-EHMA)), CAS RN: 57583-34-3), monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (2-EHMA)), CAS RN: 57583-34-30, monomethyltin tris[2-ethylhexylmercaptoacetate (MMT (2-EHMA)), monomethyltin tris[2-ethylhexylmercaptoace tris[isooctylmercaptoacetate (MMT(IOTG), CAS RN: 54849-38-6), CAS RN: 57583-34-3) and methyltin reverse ester tallate reaction product (TERP, CAS RNs: 201687-58-3, 201687-57-2, 68442-12-6, 151436-98-5) are considered as a single category of compounds for the purpose of an environmental assessment. All share a MMTC as a building block.

Environmental fate:

MMT(IOTG), MMT(EHTG), and TERP are sparingly soluble in water (0.6-10.7 mg/L). In water, these monomethyltin compounds undergo rapid degradation by hydrolysis. Although there is no stability data for MMT(EHTG)/(IOTG) or TERP, data for other organotins [DOTC, DBTL and DBT(EHTG)] indicate that the monomethyltin compounds are expected to hydrolyze within minutes to hours in water. The thioester ligands on MMT(EHTG)/(IOTG) will be rapidly displaced to form mono-methyltin hydroxide which eventually precipitates as the oxide. It is also possible that the labile ligands can be displaced by other anions in the medium. The displaced thioester ligands, EHTG/IOTG, can also undergo further hydrolysis of the ester linkage to form thioglycolic acid and ethylhexanol or isooctanol, respectively.

MMTC is a solid at room temperature and melts at 43 deg C, boils at 171 deg C, has a calculated vapour pressure of 1.7 hPa at 25 deg C, and is soluble in water (1038 g/L at 20 deg C). The measured log Kow is -0.9 and MMTC is not readily biodegradable. Atmospheric degradation occurs by photochemical induced hydroxyl radicals, with a half-life of 15.7 days. A Henry's Law constant of 3.83 x 10-7 atm-m3/mol predicts MMTC will volatilize from surface water (t1/2 = 99 days and 3 years for model river and lake, respectively). If released to the environment, MMTC is expected to partition primarily into water (54%) and soil (43%).

In water, MMTC undergoes rapid degradation by hydrolysis and is expected to hydrolyze within minutes. It is expected that the chlorines in MMTC will be displaced to form mono-methyltin hydroxide which eventually precipitates as the oxide (the alkyltin moiety (MMT) was hydrolytically stable at pH 4, 7, and 9 (t1/2 > 1 year at 25 deg C)).

TERP is a liquid at room temperature, boils at 216 deg C, and has a calculated vapour pressure of 0.2 hPa at 25 deg C. TERP is slightly soluble in water (4.4 mg/L), highly hydrophobic (log Kow = 25.5), has low potential for bioaccumulation (log BCF = 2.0), and is readily biodegradable. It is degraded atmospherically by hydroxyl radicals and ozone, with a half-life of 0.5 hours. If released to the environment, TERP is predicted to partition primarily to sediment (99%).

MMT(EHTG) is a liquid at room temperature and has a freezing point of -85 to -65 deg C, decomposes at 260 deg C has a derived vapour pressure of 0.02 hPa at 25 deg C, a calculated log Kow of 10.98, is slightly soluble in water (1.8-6 mg/L), and is readily biodegradable. MMT(EHTG) is also degraded atmospherically, with a half-life of 6.3 hours. A Henry's Law constant of 3.18×10+4 atm-m3/mol predicts MMT(EHTG) will volatilize from surface water (11/2 = 8 hours and 11 days for a model river and lake, respectively). If released to the environment, MMT(EHTG) is expected to partition primarily into sediment (71%) and soil (25%).

Bioavailability

The considerable difference in the structures of the labile ligands causes differences in water solubility between the alkyltin chloride and thioesters affecting their respective bioavailabilities and distribution in the environment. Furthermore, MMT(EHTG) and MMT(IOTG) will degrade in aqueous solution such that organisms will be exposed to the parent material and their different degradation products. MMTC is not an appropriate surrogate for the thioesters or TERP for the ecotoxicity and environmental fate endpoints. Ecotoxicity:

In the ecotoxicity tests the organisms were most likely exposed to parent substance as well as hydrolysis/degradation products.

MMTC was not acutely toxic to zebra fish (Brachydanio rerio) (96-h LC50 > 102 mg/L) or Daphnia magna (48-h EC50 > 101 mg/L). MMTC inhibited the growth (72-h EC50 = 0.03 mg/L) and biomass (72-h EC50 = 0.02 mg/L) of the green alga Scenedesmus subspicatus (NOEC = 0.007 mg/L). MMTC was not acutely toxic to earthworms at nominal concentrations up to 1000 mg/kg.

TERP was not acutely toxic to rainbow trout (Oncorhynchus mykiss) (96-hr LC50 > 4.4 mg/L), inhibited D. magna survival and mobility (48-h EC50 = 0.27 mg/L), and inhibited growth of the freshwater green alga Pseudokirchneriella subcapitata was (72-h EC50 = 0.64 mg/L; NOEC = 0.28 mg/L).

MMT(EHTG) was not acutely toxic to B. rerio (LC50 > 6 mg/L; NOEC = 3.6 mg/L) and did not inhibit the growth of S. subspicatus (72-h EC50 > 1.84 mg/L; NOEC = 0.6 mg/L). The 21-d EC50 for reproduction in a chronic Daphnia magna study was > 0.134 mg/L (NOEC = 0.134 mg/L).

Substances containing unsaturated carbons are ubiquitous in indoor environments. They result from many sources (see below). Most are reactive with environmental ozone and many produce stable products which are thought to adversely affect human health. The potential for surfaces in an enclosed space to facilitate reactions should be considered. Source of unsaturated substances Unsaturated substances (Reactive Emissions) Major Stable Products produced following reaction with ozone.

Soft woods, wood flooring, including Isoprene, limonene, alpha-pinene, other terpenes and

Isoprene, nitric oxide, squalene, unsaturated sterols,

Methacrolein, methyl vinyl ketone, nitrogen dioxide, acetone, 6MHQ, geranyl acetone, Occupants (exhaled breath, ski oils, oleic acid and other unsaturated fatty acids, unsaturated 40PA, formaldehyde, nonanol, decanal, 9-oxo-nonanoic acid, azelaic acid, nonanoic Formaldehyde, 4-AMC, pinoaldehyde, pinic acid, pinonic acid, formic acid, methacrolein,

cypress, cedar and silver fir boards, sesquiterpenes houseplants

methyl vinyl ketone, SOAs including ultrafine particles

Carpets and carpet backing

Formaldehyde, acetaldehyde, benzaldehyde, hexanal, nonanal, 2-nonenal

Linoleum and paints/polishes containing linseed oil Latex paint

4-Phenylcyclohexene, 4-vinylcyclohexene, styrene, 2-ethylhexyl acrylate, unsaturated fatty acids and esters Linoleic acid, linolenic acid,

Propanal, hexanal, nonanal, 2-heptenal, 2-nonenal, 2-decenal, 1-pentene-3-one, propionic acid, n-butyric acid Formaldehyde

Residual monomers

oxidation products

Version No: 1.5 Page 10 of 13

Quick Break D

Issue Date:30/03/2016 Revision Date: 29/01/2021

Limonene, alpha-pinene, terpinolene, alpha-terpineol, and other sesquiterpenes Isoprene, terpenes

Natural rubber adhesive Photocopier toner, printed paper,

Styrene styrene polymers

Environmental tobacco smoke

Soiled clothing, fabrics, bedding

Soiled particle filters

Ventilation ducts and duct liners

Overall home emissions

Perfumes, colognes, essential oils

Limonene, alpha-pinene, linalool, linalyl acetate, (e.g. lavender, eucalyptus, tea tree) terpinene-4-ol, gamma-terpinene

Limonene, alpha-pinene, styrene

Styrene, acrolein, nicotine

saturated fatty acids

Squalene, unsaturated sterols, oleic acid and other

other vegetative debris; soot; diesel particles

Polycyclic aromatic hydrocarbons

Unsaturated fatty acids from plant waxes, leaf litter, and

Unsaturated fatty acids and esters, unsaturated oils,

Abbreviations: 4-AMC, 4-acetyl-1-methylcyclohexene; 6MHQ, 6-methyl-5-heptene-2-one, 4OPA, 4-oxopentanal, SOA, Secondary Organic Aerosols Reference: Charles J Weschler; Environmental Helath Perspectives, Vol 114, October 2006

Formaldehyde, acetaldehyde, glycoaldehyde, formic acid, acetic acid, hydrogen and Certain cleaning products, polishes, linalool, linalyl acetate and other terpenoids, longifolene organic peroxides, acetone, benzaldehyde, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyldihydro-5-methyl-2(3H)-furanone, 4-AMC, SOAs including ultrafine particles Formaldehyde, methacrolein, methyl vinyl ketone

Formaldehyde, benzaldehyde

Formaldehyde, benzaldehyde, hexanal, glyoxal, N-methylformamide, nicotinaldehyde, cotinine

Acetone, geranyl acetone, 6MHO, 40PA, formaldehyde, nonanal, decanal, 9-oxononanoic acid, azelaic acid, nonanoic acid

Formaldehyde, nonanal, and other aldehydes; azelaic acid; nonanoic acid; 9-oxononanoic acid and other oxo-acids; compounds with mixed functional groups (=O, -OH, and -COOH)

C5 to C10 aldehydes

Oxidized polycyclic aromatic hydrocarbons

Formaldehyde, 4-AMC, acetone, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyl-dihydro-5-methyl-2(3H) furanone, SOAs including ultrafine particles

Formaldehyde, 4-AMC, pinonaldehyde, acetone, pinic acid, pinonic acid, formic acid,

benzaldehyde, SOAs including ultrafine particles

Environmental fate:

Ether groups are generally stable to hydrolysis in water under neutral conditions and ambient temperatures. OECD guideline studies indicate ready biodegradability for several glycol ethers although higher molecular weight species seem to biodegrade at a slower rate. No glycol ethers that have been tested demonstrate marked resistance to biodegradative processes. Upon release to the atmosphere by evaporation, high boiling glycol ethers are estimated to undergo photodegradation (atmospheric half lives = 2.4-2.5 hr). When released to water, glycol ethers undergo biodegradation (typically 47-92% after 8-21 days) and have a low potential for bioaccumulation (log Kow ranges from -1.73 to +0.51).

Ecotoxicity: Aquatic toxicity data indicate that the tri- and tetra ethylene glycol ethers are 'practically non-toxic' to aquatic species. No major differences are observed in the order of toxicity going from the methyl- to the butyl ethers

Glycols exert a high oxygen demand for decomposition and once released to the environments cause the death of aquatic organisms if dissolved oxygen is depleted. For limonenes

Atmospheric fate: Due to the high volatility of limonene the atmosphere is expected to be the major environmental sink for this chemical where it is expected to undergo gas-phase reactions with photochemically produced hydroxyl radicals, ozone and nitrate radicals. Calculated lifetimes for the reaction of d-limonene with photochemically produced hydroxyl radicals range from 0.3-2 h based on experimentally determined rate constants. The oxidation of limonene may contribute to aerosol and photochemical smog formation. Calculated lifetimes for the night-time reaction of d-limonene with nitrate radicals range form 0.9 to 9 minutes. The daytime atmospheric lifetime of d-limonene is estimated to range from 12 to 48 min. depending upon local hydroxyl rate and ozone concentrations. Products produced from hydroxy radical reaction with limonene are 4-acetyl-1-methylcyclohexene, a keto-aldehyde, formaldehyde, 3-oxobutanal, glyoxal and a C10 dicarbonyl. The same carbonyls, along with formic acid and C8 and C9 carboxylic acids, may form in reactions with ozone. Ozonolysis of limonene may also lead to the formation of hydrogen peroxide and organic peroxides, which have various toxic effects on plant cells and may damage forests. Products of ozonolysis include bis(hydroxmethyl)peroxide, a precursor to hydroxymethyl hydroperoxide and hydrogen peroxide. The reaction of d-limonene with ozone in the dark results in the formation of 4-acetyl-1-methylcyclohexene and formaldehyde. Reactions with nitrogen oxides produce aerosol formation as well as lower molecular weight products such as formaldehyde, acetaldehyde, formic acid, acetone and peroxyacetyl nitrate.

Terrestrial fate: When released to the ground limonene is expected to have low to very low mobility in soil based on its physicochemical properties. The soil adsorption coefficient (Koc) calculated on the basis of solubility (13.8 mg/l, 25 C) and the log octanol/ water partition coefficient (4.23) ranges from 1030 and 4780. The Henry's law constant indicates that limonene will rapidly volatilise from both dry and moist soil; however its absorption to soil may slow the process.

Aquatic fate: In the aquatic environment, limonene is expected to evaporate to a significant extent owing to its high volatility. The estimated half-life for volatilisation of limonene from a model river (1 m deep, flow 1 m/s and wind speed 3 m/s) is 3.4 h. Some limonene is expected to absorb to sediment and suspended organic matter.

Biodegradation and bioaccumulation: Limonene does not have functional groups for hydrolysis and its cyclohexene ring and ethylene group are known to resist hydrolysis. Therefore, hydrolysis of limonene is not expected in terrestrial or in aquatic environments. The hydrolytic half-life of d-limonene is estimated to be >1000 days. Biotic degradation of limonene has been shown with some species of microorganisms such as Penicillium digitatum, Corynespora cassiicola, Diplodia gossyppina and a soil strain of Pseudomonans sp (SL strain). Limonene is readily biodegradable (41-98% degradation by biological oxygen demand in 14 d) under aerobic conditions in a standard test (OECD 301 C 'Modified MITI Test (1)', OECD, 1981a; MITI, 1992). Also in a test simulating aerobic sewage treatment (OECD 303 A 'Simulation Test - Aerobic Sewage Treatment: Coupled Units Test'; OECD, 1981b), limonene disappeared almost completely (>93.8%) during 14 days of incubation.

Biodegradation has been assessed under anaerobic conditions; there was no indication of any metabolisms, possibly because of the toxicity to micro-organisms. The bioconcentration factor, calculated on the basis of water solubility and the log octanol/ water partition coefficient (log Kow) is 246-262, suggesting that limonene may bioaccumulate in fish and other aquatic species.

Ecotoxicity: Technical limonene is practically nontoxic to birds on a subacute dietary basis, and is slightly toxic to freshwater fish and invertebrates on an acute basis. for d-limonene:

LD50 Colinus virginianus (Bobwhite quail, 16 weeks old) oral >2000 mg/kg

LC50 Colinus virginianus (Bobwhite quail, 10 day old) dietary >5620 ppm/8 days

LC50 Colinus virginianus (Bobwhite quail, 14 day old) dietary >5000 ppm/8 days

LC50 Anas platyrhynchos (Mallard duck, 14 day old) dietary >5000 ppm/8 days

LC50 Oncorhynchus mykiss (Rainbow trout) 80 ppm/96 hr (95% confidence limit: 71.4-88.7 ppm); static /92% Al formulated product

LC50 Oncorhynchus mykiss (Rainbow trout) 568 ppm/96 hr (95% confidence limit: 437-852 ppm); static /4.0% Al formulated product

EC50 Daphnia magna (Water flea, <24 hr old; intoxication, immobilization) 17 ppm/48 hr (95% confidence limit: 11-33 ppm); static /4.0% Al formulated product

LC50 Pimephales promelas (Fathead minnow) 966 ppm/96 hr (95% confidence limit: 740-1652 ppm); static /4.0% Al formulated product LC50 Pimephales promelas (Fathead minnow) 38.5 mg/L/96 hr; flow through /from table/ LC50

Leuciscus idus (Golden orfe) 32 mg/L/48 hr /Conditions of bioassay not specified in source examined

The acute toxicity of d-limonene ranges from slight to high for aquatic organisms. The lowest acute toxicity values (EC50 or LC50) identified were approximately 0.4 mg/litre for Daphnia (US EPA, 1990b) and 0.7 mg/litre for fish (US EPA, 1990a,b). The no-observed-effect concentration (NOEC) for

green algae is approximately 4 mg/litre (US EPA, 1990a). The acute toxicity (EC50 or LC50) of dipentene to Daphnia and fish is about 50-70 times lower than that for d-limonene (US EPA, 1990b). No studies were identified on the chronic toxicity of limonene to aquatic organisms.

For linear alkylbenzene sulfonic acids (LABS) (and their salts):

Environmental fate:

LABS are generally highly water soluble (miscible) and have a relatively low Kow. The environmental fate data indicate that these chemicals are highly susceptible to photo-and biodegradation.

LABS are strong acids (pKa <1) that are completely ionised in aqueous solutions. The chemical species present in aqueous solutions at neutral (physiological) pH is the linear alkylbenzene sulfonate (the LAS ion) (C10-14 linear alkyl benzene-SO3-), the identical species present in solutions of LAS, where the counter ion (typically sodium, calcium or ammonium) will disassociate to form the LAS anion. Thus, the physical-chemical, environmental fate, ecotoxicity and toxicity properties of the LAS and LAS would be expected to be similar. It should be noted that the LABS are liquids and LAS is a solid at room temperature. However, in water the difference between the LAB sulfonic acids and LAS disappears as dissociation results in the same ion in solution. Therefore, parameters such as Kow, water solubility and pH/pKa are appropriate to compare. The octanol-water partition coefficients are around 2 (log Kow) for all of the chemicals in this category

LABS are not expected to volatilise significantly. Fugacity modeling predicts that most of these chemicals will partition to the soil and water. Very little partitions to the air or sediment. Photodegradation is estimated (using EPI Suite software) to be a significant mechanism for breakdown. Based on the model estimates, the hydroxyl radical reaction half-lives ranged from about 7 to 8.6 hours. Estimated data for LAS were similar. Furthermore, measured data for LAS suggest even more rapid photodegradation, with 95% of the material degraded within 20 minutes at 20 C in a laboratory study.

Experimental data data indicates that LAS is stable in water

Version No: 1.5 Page 11 of 13

Quick Break D

Issue Date:30/03/2016
Revision Date: 29/01/2021

LABS are generally biodegradable. Measured biodegradation data indicate substantial microbial degradation under aerobic conditions. For dodecylbenzene sulfonic acid 69% of the material mineralised after 28 days. Biodegradation of the C10-16 derivatives and the LAS are also rapid, with 93% or greater of the material degrading within 28 or 37 days. In addition, studies show that straight chain alkylbenzene sulfonate materials readily degrade, with the shorter chain length compounds degrading more rapidly Thus, the data indicate that these chemicals are highly susceptible to degradation, both by photolytic and microbial mechanisms

The initial step in the biodegradation of LABS under aerobic conditions is an omega -oxidation of the terminal methyl group of the alkyl chain to form a carboxylic acid. Further degradation proceeds by a stepwise shortening of the alkyl chain by beta -oxidation leaving a short-chain sulfophenyl carboxylic acid. In the presence of molecular oxygen the aromatic ring structure hydrolyses to form a dihydroxy-benzene structure which is opened before desulfonation of the formed sulfonated dicarboxylic acid. The final degradation steps have not been investigated in details but are likely to occur by general bacterial metabolic routes involving a total mineralisation and assimilation into biomass. Both the initial omega -oxidation and the hydroxylation of the ring structure of LAS require molecular oxygen, and they are not expected to take place under anoxic conditions.

The BioConcentration Factor (BCF) tends to increase with increasing alkyl chain length but also the position of the aryl sulfonate moiety was important. A higher BCF was seen for linear alkyl benzenesulfonate isomers with the aryl sulfonate attached. Available data indicate that LABS have low to moderate bioaccumulation potential, with a bioconcentration factor for dodecyl benzene sulfonic acid of 130. LAS has bioconcentration factors that range from 22 to 87.

Ecotoxicity

Numerous studies have been performed to determine the effects of LABS towards aquatic organisms. The aquatic effect concentrations that were observed in these studies are highly variable. This variation is partly related to the testing of different isomers and homologues, but it may also be due to the specific test conditions and species. The length of the alkyl chain is an important factor determining the aquatic toxicity. In general, the homologues with the highest number of carbons in the alkyl chain are more toxic than are those with shorter alkyl chains. Today, commercial LABS have a homologue distribution between C10 and C13 with a typical average alkyl chain length of C11.6.

The widest range in the toxicity of LABS towards species belonging to the same group is found for algae. Approximately 90% of the data found in the literature fall between 0.1 and 100 mg/l. Typical ranges of EC50 values are 1 to 100 mg/l for fresh water species and < 1 to 10 mg/l for marine species. Typical values lie between 29 and 170 mg/l A very low EC100 value of 0.025 mg/l was determined for Gymnodium breve. Previous studies in which Gymnodium breve was exposed with AES confirm that this species is highly sensitive to surfactants, and occasionally available data for Gymnodium breve should therefore not be used for comparison of the aquatic toxicity between various surfactants. LC50 values have been found in the range of 1 to 10 mg/l when Daphnia magna were exposed with LABS homologues between C10 and C13. The acute toxicity of LABS to Daphnia magna generally increases with increasing alkyl chain length. Typical values lie between 3 and 12 mg/l.

A study with the marine crustacean Acartia tonsa indicated that a C10-13 LAS affected the survival at 0.54 mg/l (LC50) and the development rate at 0.51 mg/l (EC50) after 8 days of exposure. The 48 h-LC50 that was obtained in the same study with Acartia tonsa was 2.1 mg/l.

Metabolites from biotransformation of LABS are reported to have a much lower toxicity to invertebrates compared to the toxicity of the intact surfactant.

The toxicity of LABS to fish generally increases with increasing alkyl chain length, and approximately a 10-fold difference in toxicity between homologues separated by two carbon atoms has been observed. As also noted for invertebrates, fish are less susceptible to metabolites from biotransformation of LABS . LC50 values below 1 mg/l were found for C11.9 (0.71 mg/l), C13 and C14 (both 0.4 mg/l) in studies with fathead minnow.

LABS sorb to sediment with partition coefficients of 50 to 1,000. The toxicity of LABS bound to sediment is relatively low compared to LABS in solution. NOEC and LOEC values were as high as 319 and 993 mg LABS/kg, respectively, for the sediment-living Chironomus riparius. The corresponding NOEC for LABS in solution was as low as 2.4 mg/l indicating that only a small fraction of the sorbed LABS was bioavailable. LABS dissolved in water may also cause chronic effects like reduction of the growth rate of the marine mussel Mytilus galloprovincialis. LABS sorbed to sediments did not have similar effects.

Environmental and Health Assessment of Substances in Household Detergents and Cosmetic Detergent Products, Environment Project, 615, 2001. Torben Madsen et al: Miljoministeriet (Danish Environmental Protection Agency) Assessment Plan for the Linear Alkylbenzene (LAB) Sulfonic Acids Category in Accordance with the USEPA High Production Volume Chemical Challenge Program: The LAB Sulfonic Acids Coalition

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air	
	No Data available for all ingredients	No Data available for all ingredients	

Bioaccumulative potential

	Ingredient	Bioaccumulation
		No Data available for all ingredients
_		'

Mobility in soil

Ingredient	Mobility	
	No Data available for all ingredients	

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ► Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Version No: 1.5 Page 12 of 13

Quick Break D

Issue Date: 30/03/2016
Revision Date: 29/01/2021

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
potassium pyrophosphate	Not Available
diethanolamine cocoate	Not Available
(linear)alkylbenzenesulfonic acid, sodium salts	Not Available
orange oil	Not Available
1,2-benzisothiazoline-3-one	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
potassium pyrophosphate	Not Available
diethanolamine cocoate	Not Available
(linear)alkylbenzenesulfonic acid, sodium salts	Not Available
orange oil	Not Available
1,2-benzisothiazoline-3-one	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

potassium pyrophosphate is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

diethanolamine cocoate is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

(linear)alkylbenzenesulfonic acid, sodium salts is found on the following regulatory lists

Not Applicable

orange oil is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

1,2-benzisothiazoline-3-one is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	No ((linear)alkylbenzenesulfonic acid, sodium salts)
Canada - DSL	No ((linear)alkylbenzenesulfonic acid, sodium salts)
Canada - NDSL	No (potassium pyrophosphate; diethanolamine cocoate; (linear)alkylbenzenesulfonic acid, sodium salts; orange oil; 1,2-benzisothiazoline-3-one)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	No ((linear)alkylbenzenesulfonic acid, sodium salts; orange oil)
Japan - ENCS	No (potassium pyrophosphate; diethanolamine cocoate; (linear)alkylbenzenesulfonic acid, sodium salts; orange oil)
Korea - KECI	No ((linear)alkylbenzenesulfonic acid, sodium salts)
New Zealand - NZIoC	No ((linear)alkylbenzenesulfonic acid, sodium salts)
Philippines - PICCS	No ((linear)alkylbenzenesulfonic acid, sodium salts)
USA - TSCA	No ((linear)alkylbenzenesulfonic acid, sodium salts)
Taiwan - TCSI	No ((linear)alkylbenzenesulfonic acid, sodium salts)
Mexico - INSQ	No (potassium pyrophosphate; diethanolamine cocoate)
Vietnam - NCI	No ((linear)alkylbenzenesulfonic acid, sodium salts)
Russia - ARIPS	No ((linear)alkylbenzenesulfonic acid, sodium salts)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

Version No: 1.5 Page 13 of 13

Quick Break D

Issue Date:30/03/2016 Revision Date: 29/01/2021

SECTION 16 Other information

Revision Date	29/01/2021
Initial Date	15/03/2016

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

Powered by AuthorITe, from Chemwatch.